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Energy Efficient Quality of Service Traffic
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Dan J. Dechene, Student Member, IEEE, and Abdallah Shami, Member, IEEE

Abstract—In this paper we focus on minimizing the long-term
average power consumption of a single transmitter providing
Quality of Service (QoS) enabled traffic to a single receiver.
Both the transmitting and receiving stations are equipped with
multiple antennas. First, we present a general {𝐾 ×𝑀} system
model where 𝐾 is the number of independently buffered QoS
streams and 𝑀 is the number of parallel channels available
through MIMO SVD eigenmode transmission. Through ap-
plication of the constrained Markov decision process (MDP)
framework combined with a novel MAC layer rate assignment
scheme, a randomized per-buffer scheduling policy is obtained.
The designed policy exploits queue state information to schedule
traffic while meeting throughput, delay and loss constraints.
Packets scheduled for transmission during each frame are
mapped across the set eigenmode channels subject to available
channel resources and the set of channel eigenvalues. Simulation
results are provided for several scenarios. System drawbacks,
limitations and extensions are also discussed.

Index Terms—Quality of Service, Markov Decision Process,
MIMO, Scheduling, Cross-Layer, QSI

I. INTRODUCTION

RECENTLY, the delivery of multimedia services in the
home has began to shift from traditional wireline to wire-

less technologies. Transmission of multimedia traffic however
is more complex than that of generic Internet traffic due to
stringent Quality of Service (QoS) requirements traffic. As
such, it is even more difficult to provide such guarantees over
the unreliable wireless medium.

A number of cross-layer protocols have surfaced in re-
cent years, as a method of ensuring QoS over the wireless
channel [1]–[8]. In [2] and [4] for example, the authors
focus on constrained QoS where they show that knowledge
of the instantaneous buffer occupancy, also known as queue
state information (QSI), combined with knowledge of the
wireless channel can guarantee MAC layer throughput, delay
and improve energy performance via dynamic scheduling
techniques. These works however are mainly focused on a
single queue which is serviced over a single channel which we
herein denote these as {1×1} systems. Most modern wireless
communications systems however, are comprised of multiple
input queues with various QoS requirements, and may in turn
be transmitted over multiple channel systems (such as those
channels provided by Multiple Antenna or MIMO systems).
More generally, we define a {𝐾×𝑀} system as a transmission
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system with 𝐾 queues as inputs to the system and 𝑀 is the
number of channels available for transmission. While several
recent works [3], [7]–[9] have looked at scheduling techniques
for supporting QoS in {𝐾 × 𝑀} systems, to the best of
our knowledge there exists no prior works which exploits
full QSI in these systems while meeting hard, heterogeneous
QoS constraints. In Lau and Chen’s work [8] for example, a
framework for a delay-optimal power and resource allocation
is proposed for such a heterogeneous traffic system, however
the weights employed for delay in the optimization framework
do not impose hard guarantees on heterogenous average delay
and losses which is required for QoS stringent traffic streams.

In this work, we design a cross-layer scheduler in the
presence of full QSI for a generic {𝐾 × 𝑀} system to
target specific average delay and packet loss rates. Through
application of a novel MAC layer rate assignment scheme,
we design a scheduler that is able to exploit full QSI to meet
QoS requirements while reducing long-term average power
consumption and reduced complexity compared to the full-
scale optimization problem.

The remainder of this paper is organized as follows. In
Section II we describe both the MAC and PHY layer models
used in this work. Later, in Section III we describe our general
{𝐾 × 𝑀} scheduler design. In Section IV we describe how
to formulate the scheduler design in general optimization
frameworks. Section V provides detailed simulation results
and Section VI proposes extensions for time-varying channels.
Finally Section VII draws conclusions on this work.

II. SYSTEM MODEL

The system model used in the work is a general {𝐾 ×
𝑀} downlink model where 𝐾 is used to denote the number
of independent MAC layer queues as an input to the system
and 𝑀 is used to denote the number of PHY layer channels
available for transmission. The overall system model is shown
in Fig. 1 where the MAC and PHY layer subcomponents are
discussed below.

A. MAC Layer Model

The media access control (MAC) layer model used in this
work is as follows. Consider the downlink system shown in
Fig. 1. Traffic is received from upper layers and classified into
𝐾 traffic streams. A single traffic stream has an associated
set of QoS parameters {𝐷𝑖, 𝐿𝑖, 𝜆𝑖, 𝐵𝑖, 𝛿𝑖} which denotes the
maximum tolerable average delay, packet length, average
arrival rate, buffer size and maximum tolerable packet loss
rate respectively for that stream. Each stream may represent
a broad service class (such as voice over IP or video) or a

1536-1276/10$25.00 c⃝ 2010 IEEE



DECHENE and SHAMI: ENERGY EFFICIENT QUALITY OF SERVICE TRAFFIC SCHEDULER FOR MIMO DOWNLINK SVD CHANNELS 3751

P2

PL

P1

K – Traffic 
Class 

Scheduling 
Base Station

1

2

K

BPSK or 
M-QAM 

Encoders 
(AMC)

Packets Dropped due to 
Channel Error, Pl,i

L - Parallel Channels

Transmitter MAC Transmitter PHY

λ1

λ2

λK

Receiving 
Station

BPSK or 
M-QAM 

Decoders 
(AMC)

SVD 
Encoder 

and Power 
Allocation

SVD 
Decoder

1

2

L

Packets Dropped due to 
Overflow, Pd,i

Receiver PHY Receiver MACPhysical MIMO Channel

1

2

L

1

2

K
AMC 

Selector

CSI Feedback Channel

SVD Feedback Channel

Li

Bi

Fig. 1. Multi-queue cross-layer model.

particular application-layer stream. Each incoming stream is
stored in a finite-length first-in, first-out (FIFO) buffer where
incoming packets are dropped when the buffer is full.

The target loss (𝛿𝑖) can be further broken down into packets
dropped at the source (due to buffer overflow, 𝑃𝑑,𝑖) and
packets dropped at the destination (due to channel errors, 𝑃𝑙,𝑖).
The total probability of an erroneous packet for queue 𝑖 is
𝛿𝑖 = 1− (1− 𝑃𝑑,𝑖)(1− 𝑃𝑙,𝑖). The total average tolerable loss
rate is known for each particular traffic class. In this work, we
also assume that the target total probability of packet failure
on the channel is also known.

The time horizon is divided into fixed scheduling intervals
denoted as frames. Each frame has a duration of 𝑇𝑓 seconds.
Packets arriving during the frame are assumed to be enqueued
at the end of the frame. The time duration lying in [𝑛𝑇𝑓 , (𝑛+
1)𝑇𝑓) is denoted as time frame 𝑛.

The 𝐾 buffers are statistically multiplexed into a QoS-aware
𝐾-queue scheduler which makes scheduling decisions based
on the CSI feedback from the subscribing station, the number
of packets in each of the 𝐾 MAC buffers, and their parameter
set. While the theoretical number of queues (𝐾) with varying
QoS constraints is large, practical implementations employ a
finite number of classes [10] as most multimedia services can
be categorized into one of several QoS classes.

B. PHY Layer Model

The PHY layer transmits packets scheduled for transmis-
sion during each frame. Packets are separated into 𝑀 =
min(𝑀𝑇 ,𝑀𝑅) parallel streams and encoded with BPSK or
M-QAM, where the constellation is decided based on channel
conditions and MAC rate demands. The 𝑀 streams are then
reconstructed at the receiver and forwarded to the receiver
MAC. The 𝑀 streams are provided by MIMO singular value
decomposition (SVD)1 achieved by assuming full channel
knowledge is available at the transmitter error-free. The state
of the 𝑀 channels is characterized by their ordered eigenval-
ues where 𝜆2

1 ≥ 𝜆2
2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆2

𝑀 ≥ 0. For simplicity at this
stage, we assume these eigenvalues are known, and do not
change in time.

1The framework can easily be extended to any multi-channel system with
known subchannel error performance.

In general, the maximum number of parallel channels is
equal to the minimum number of antennas at either the trans-
mitting or receiving station. Recent measurement campaigns
conducted in urban environments however suggest [11], [12]
that there are only a finite number of resolvable non-zero
eigenvalues, which in general, can be less than the number
of antennas.

Each independent channel is subject to noise. In the pres-
ence of additive white Gaussian noise (AWGN), the bit error
rate of an uncoded 𝑀 -ary signal is approximately [13]

𝑃𝑏(𝛾𝑗 ,𝑀𝑗) ≈ 0.15 exp

(−1.55𝛾𝑗
𝑀𝑗 − 1

)
, 𝑗 = 1, 2, . . . ,𝑀 (1)

where 𝑀𝑗 is the size of the constellation set used in channel 𝑗,
𝛾𝑗 is the per symbol SNR given as 𝛾𝑗 = 𝑃𝑗𝛾0𝜆

2
𝑗 , 𝑃𝑗 is the

power allocated to channel 𝑗 and 𝛾0 is the reference SNR
level.

C. System Operation

From frame 𝑛−1 to frame 𝑛, the evolution of each buffer 𝑖
follows

𝑢𝑖(𝑛) = min{𝐵𝑖,max{0, 𝑢𝑖(𝑛− 1)− 𝑐𝑖(𝑛)}+𝐴𝑖(𝑛)} (2)

where 𝑢𝑖(𝑛) describes the buffer occupancy (number of buffer
spaces in use) at time frame 𝑛, 𝐵𝑖 denotes the maximum buffer
occupancy, 𝑐𝑖(𝑛) denotes the number of transmitted packets
during the frame 𝑛 (i.e., the transmission action taken by queue
𝑖) and 𝐴𝑖(𝑛) denotes the number of arrivals in the queue.
Here, 𝑐𝑖(𝑛), 𝑢𝑖(𝑛), 𝐴𝑖(𝑛) ≥ 0, ∀𝑛 and 𝑐𝑖(𝑛), 𝑢𝑖(𝑛), 𝐴𝑖(𝑛) ∈ 𝕀

where 𝕀 is the set of all Integers. The number of arrivals during
frame 𝑛 to a given queue (or 𝐴𝑖(𝑛)) is a Poisson process with
an average arrival rate of 𝜆𝑖 and a constant packet length of 𝐿𝑖.
Further to this, packet arrivals are assumed to be independent
of the current queue occupancy, service process and arrivals
to other queues. For a Poisson process, the probability of 𝑘
packets arriving to queue 𝑖 during a frame of duration 𝑇𝑓 is
well-known to be

𝑃𝑟[𝐴𝑖(𝑇𝑓 ) = 𝑘] =

{
(𝜆𝑖𝑇𝑓 )

𝑘 exp(−𝜆𝑖𝑇𝑓 )
𝑘! , if 𝑘 ≥ 0

0, otherwise
(3)
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Packets are serviced in FIFO discipline over the previously
described MIMO physical layer. In each individual parallel
channel, bits are encoded from a finite adaptive modulation
and coding (AMC) alphabet ℳ which determines the number
of bits that can be encoded onto a single symbol. The selection
of the set is described in later sections. Denoting 𝑘𝑗 as the
spectral efficiency in bits/symbol for choosing a constellation
of size 𝑀𝑗 ∈ ℳ for the 𝑗th channel and 𝑇𝑠 as the symbol
duration, the maximum number of bits that can be transmitted
through the 𝑗th channel over a duration of 𝑇𝑓 seconds is 𝑘𝑗𝑇𝑓

𝑇𝑠

with a bit error rate given in (1).

III. {𝐾 ×𝑀} SCHEDULER DESIGN

The proposed scheduler utilizes queue state information
(QSI) to design a scheduling policy Ω. A given scheduling
policy Ω describes the channel, power and rate assignment
for all time frames 𝑛. The benefit of utilizing QSI has been
well demonstrated by [1] and [2] in the case of a {1 × 1}
system, however extensions for general {𝐾×𝑀} systems are
non-trivial. Now, consider the following practical observation.

Examining only the buffer states for a set of 𝐾 queues,
the global set of states to describe the joint occupancy level
across all queues is a 𝐾-dimensional set spanning the possible
occupancy levels for the model discussed above and can be
expressed as 𝒰 := 𝒰1 × ⋅ ⋅ ⋅ × 𝒰𝐾 where 𝒰𝑖 = {0, 1, . . . , 𝐵𝑖}
is the state set for any buffer 𝑖 and where 0 denotes an empty
buffer.

It was previously noted that arrivals to each queue are
independent, however the service process couples the queues.
In practice however, the number of possible service rates is
comprised of a finite subset of the possible buffer states,
and in our work physically represents the number of packets
taken from the queue during a given frame. We previously
denoted this quantity as 𝑐𝑖(𝑛) (i.e., the transmission action
taken by queue 𝑖 during frame 𝑛. Now suppose, we have
a set of rates which we denote 𝒞𝑖 as the set of possible
MAC rates (measured in packets) that can be serviced during
each frame for queue 𝑖 (i.e., all possible values that can
be taken on by 𝑐𝑖(𝑛), ∀𝑛). This set is independent of the
current frame 𝑛 and we assume that 𝒞𝑖 is chosen such that the
maximum simultaneous packet transmission rate is achievable
(i.e., admission control is performed in advance to ensure
the maximum transmission rate of all streams is less than
the maximum rate on the channel). The overall MAC rate
state-space of transmission actions is by extension simply
𝒞 := 𝒞1 × ⋅ ⋅ ⋅ × 𝒞𝐾 . Assuming that ∣𝒞𝑖∣ << ∣𝒰𝑖∣ which we
argue occurs in practice, then by trivial extension ∣𝒞∣ << ∣𝒰∣,
where ∣ ⋅ ∣ denotes the size of a set. The preceding implies that
any channel mapping and power control scheme need only
consider ∣𝒞∣ possible MAC layer rates rather than ∣𝒰∣ possible
states as a method of reducing the system complexity.

Using the above arguments, given a predetermined number
of MAC service rates 𝒞𝑖 for each queue 𝑖, the design of a
{𝐾 ×𝑀} scheduler can be constructed as two components:

A: A mechanism to determine how to map a set of packets
during each frame across all parallel channels while per-
forming rate and power adaptation to minimize power
usage and maintain channel error rate requirements. This

is computed for each 𝑐 ∈ 𝒞, where 𝒞 is the MAC layer
rate state-space, and

B: A mechanism to select the appropriate MAC layer
transmission rate from each queue during each time
frame to minimize total average transmission power
found for 𝑐 ∈ 𝒞 in addition to ensuring QoS constraints
are met by exploiting QSI.

The above problem segmentation allows the power, rate
and channel allocation problems to be solved with reduced
complexity by considering only a subset of information in each
stage. As a result of the segmentation, components comprising
the total average packet losses (i.e., dropping probability and
channel error probability) are constrained individually at each
stage.

A. Channel Mapping and Power Control

The first component of the scheduling mechanism maps a
set of packets during a frame over the set of parallel channels.
This procedure is performed for each possible MAC layer rate
combination (i.e., each 𝑐 ∈ 𝒞). The resulting outputs of this
component are:

∙ A bit loading map 𝑋𝑗,𝑖(𝑐), ∀𝑗, 𝑖 which denotes the num-
ber of bits per queue 𝑖 that are mapped to channel 𝑗
during the time frame,

∙ Constellation selection for each channel (𝑘𝑗(𝑐), ∀𝑗), and
∙ Power assignment for each channel (𝑃𝑗(𝑐), ∀𝑗)

where 𝑐 ∈ 𝒞. Relevant complexity issues will be addressed
in a later Section. Further, we have the following constraints
applied in this component.

1) Packet Loss Due to Channel Error Constraint: Firstly,
the average packet error rate experienced by a packet from
stream 𝑖 in state 𝑐 given as

𝑃𝐸𝑅𝑖(𝑐) = 1−
𝑀∏
𝑗=1

(1− 𝑃𝑏,𝑗(𝑐))
𝑥𝑗,𝑖(𝑐)𝐿𝑖 , ∀𝑖 (4)

where 𝑃𝑏,𝑗(𝑐) is the bit error rate for channel 𝑗 with power
𝑃𝑗(𝑐) assigned, spectral efficiency of 𝑘𝑗(𝑐) during state 𝑐 given
from (1) as 𝑃𝑏,𝑗(𝑐) = 𝑃𝑏(𝑃𝑗(𝑐)𝛾0𝜆

2
𝑗 , 2

𝑘𝑗(𝑐)) and 𝑥𝑗,𝑖(𝑐) is the
percentage of bits per packet transmitted in the channel 𝑗 from
queue 𝑖 such that

∑𝑀
𝑗=1 𝑥𝑗,𝑖(𝑐) = 1.

Next, we assume the average packet error rate is targeted
at each instant of time (i.e., 𝑃𝐸𝑅𝑖(𝑐) = 𝔼𝑐[𝑃𝐸𝑅𝑖(𝑐)] where
𝔼𝑐[⋅] is the expectation over 𝒞). The constraint on channel
losses is then

1−
𝑀∏
𝑗=1

(1− 𝑃𝑏,𝑗(𝑐))
𝑥𝑗,𝑖(𝑐)𝐿𝑖 ≤ 𝑃𝑙,𝑖, ∀𝑐, 𝑖 (5)

where 𝑃𝑙,𝑖 is the target channel loss rate and is a portion of
the total loss rate.

To further simplify (5), it can be approximated as2

1−
⎛
⎝1−

𝑀∑
𝑗=1

𝑥𝑗,𝑖(𝑐)𝑃𝑏,𝑗(𝑐)

⎞
⎠𝐿𝑖

≤ 𝑃𝑙,𝑖, ∀𝑖 (6)

2See Proof Online: http://www.dechene.ca/TWC/perproof.pdf
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Defining 𝑋𝑗,𝑖(𝑐) as the number of bits mapped to channel 𝑗
from queue 𝑖 over a frame of duration 𝑇𝑓 . Relating this to the
quantity 𝑥𝑗,𝑖(𝑐) discussed above we have

𝑋𝑗,𝑖(𝑐) = 𝑥𝑗,𝑖(𝑐)𝑐𝑖(𝑐)𝐿𝑖 = 𝑥𝑗,𝑖(𝑐)𝑅𝑖(𝑐) (7)

where 𝑐𝑖(𝑐) is defined as before in number of packets taken
from queue 𝑖 in state 𝑐 and 𝑅𝑖(𝑐) is this quantity measured
in bits. From (6), the final expression for the packet loss
constraint is

𝑃𝑙,𝑖 ≥ 1−
⎛
⎝1−

𝑀∑
𝑗=1

𝑋𝑗,𝑖(𝑐)𝑃𝑏,𝑗(𝑐)

𝑅𝑖(𝑐)

⎞
⎠𝐿𝑖

, ∀𝑖 (8)

Which can be constrained in terms of the bit error rates
such that

𝑀∑
𝑗=1

𝑋𝑗,𝑖(𝑐)𝑃𝑏,𝑗(𝑐)

𝑅𝑖(𝑐)
≤ 𝐵𝐸𝑅𝑖, ∀𝑖, (9)

where 𝐵𝐸𝑅𝑖 = 1− (1 − 𝑃𝑙,𝑖)
1
𝐿𝑖

2) Rate Selection Constraints: We also select constellation
schemes for each channel such that the requested MAC layer
rate requirement is met. The total MAC layer rate requirement
is given as

∑𝐾
𝑖=1 𝑅𝑖(𝑐). Therefore we note that

𝑀∑
𝑗=1

𝑘𝑗(𝑐)𝑇𝑓
𝑇𝑠

≥
𝐾∑
𝑖=1

𝑅𝑖(𝑐) (10)

is a necessary condition. We also note that the set {𝑘𝑗}𝑀𝑗=1 that
satisfies the above such that

∑𝑀
𝑗=1 𝑘𝑗 should be minimized to

achieve the minimum power usage.

Since by design 𝑘𝑗 ∈ ℳ is a discrete set and (1) is
monotonic in 𝑘𝑗 , one can easily show that any set {𝑘𝑗} ∈ ℳ
that minimizes transmission power must satisfy

𝑀∑
𝑗=1

𝑘𝑗(𝑐) =

⌈
𝑇𝑠
𝑇𝑓

𝐾∑
𝑖=1

𝑅𝑖(𝑐)

⌉
(11)

where in this case, ⌈⋅⌉ denotes rounding up to the nearest valid
sum of 𝑘𝑗 values. The set of all valid AMC mode combinations
that satisfies the above for each 𝑐 ∈ 𝒞 is denoted 𝒦𝑚𝑖𝑛(𝑐).

While (11) is true if valid spectral efficiencies in each
channel increment by 1, the values that can be taken on
by 𝑘𝑗 fall within the set of allowable AMC modes and in
this work is further restricted to {0, 1, 2, 4, 6} representing
no transmission, BPSK, QPSK and 16/64-QAM respectively.
Therefore a marginal increase in transmission rate may result
in an minimum increase of spectral efficiency of 2 in one
channel. To integrate this phenomenon, the search set of valid
AMC modes is extended such that

𝒦(𝑐) =

{ 𝒦𝑚𝑖𝑛(𝑐)
∪𝒦𝑚𝑖𝑛+1(𝑐),

∑𝐾
𝑖=1 𝑅𝑖 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12)

where 𝒦𝑚𝑖𝑛+1(𝑐) is the set of AMC modes satisfying⌈
𝑇𝑠

𝑇𝑓

∑𝐾
𝑖=1 𝑅𝑖(𝑐)

⌉
+ 1.

3) Channel Mapping Constraints: Based on the system
design, we also have the following constraints on the mapping

coefficients 𝑋𝑗,𝑖(𝑐):

𝑀∑
𝑗=1

𝑋𝑗,𝑖(𝑐) = 𝑅𝑖(𝑐), 𝑖 = 1, 2, . . .𝐾 (13)

𝐾∑
𝑖=1

𝑋𝑗,𝑖(𝑐) ≤ 𝑘𝑗(𝑐)𝑇𝑓
𝑇𝑠

, 𝑗 = 1, 2, . . . ,𝑀 (14)

4) Power Control: Minimization of the average applied
power is the objective function. Average power is computed
as the sum of power allocated in each subchannel multiplied
by the number of symbols transmitted over that subchannel or
simply

𝑀∑
𝑗=1

𝑃𝑗(𝑐)

𝑘𝑗(𝑐)

𝐾∑
𝑖=1

𝑋𝑗,𝑖(𝑐) (15)

The above set of constraints, which contains both Integer
and discrete variables can be formulated as a mixed-Integer
non-linear programming (MINLP) problem. The details of
the MINLP formulation and elements are discussed in Sec-
tion IV-A.

B. Locally Optimized MAC Rate Selection

The second component of the {𝐾 × 𝑀} scheduler design
is to select a MAC layer transmission rate (or 𝑐𝑖 ∈ 𝒞𝑖) to
determine the number of packets to transmit during frame
𝑛 from queue 𝑖. This decision is based on both the QoS
constraints and the power allocation computed in (15).

Each queue is characterized by its current state 𝑢𝑖 ∈ 𝒰𝑖
denoting the current occupancy level. During anytime 𝑛, 𝑐𝑖
packets may be taken from the queue where 𝒞𝑖 is the set
of all transmission actions (packets that can be transmitted)
during a given frame. The scheduling policy Ω defines the
set probabilities of choosing 𝑐𝑖 when the current queue state
is 𝑢𝑖 for each queue 𝑖. From (2) it can be seen that the
queue occupancy during any frame 𝑛 depends only on the
occupancy during frame 𝑛− 1 and arrivals during that frame.
As such, the above can be solved as constrained Markov
decision process (CMDP) [4] to obtain a scheduling policy
Ω. Let 𝜃𝑖(𝑐𝑖, 𝑢𝑖∣Ω) be a steady-state distribution function that
exists for a particular policy Ω which denotes the probability
of being in state 𝑢𝑖 and transmitting 𝑐𝑖 packets during frame
𝑛. The scheduling policy Ω is obtained through application of
the constraints on average delay and MAC layer throughput
given as follows.

1) Throughput Constraint: The dropping probability is
related to the MAC throughput by

𝜒𝑖 = 𝜆𝑖(1− 𝑃𝑑,𝑖)𝑇𝑓 (16)

Therefore we do not constrain the dropping probability di-
rectly, but rather constrain the minimum MAC layer through-
put. The throughput at each state 𝑢𝑖 is dependant on both the
queue state and the action taken (i.e., 𝑢𝑖 and 𝑐𝑖). For a given
set {𝑐𝑖, 𝑢𝑖} during frame 𝑛, the throughput is

𝜒𝑖:𝑛(𝑐𝑖, 𝑢𝑖) = min(𝑐𝑖, 𝑢𝑖) (17)
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2) Delay Constraint: From Little’s Theorem, the average
queueing delay constraint is

𝐷𝑖 ≥ 𝒟𝑖 =
𝑞𝑖

𝜆𝑞,𝑖𝑇𝑓
(18)

where 𝑞𝑖 is the average queue size and 𝜆𝑞,𝑖 is the average
enqueued arrival rate for queue 𝑖. By design we can express
𝑞𝑖 using the steady-state distribution 𝜃𝑖(𝑐𝑖, 𝑢𝑖∣Ω) as:

𝑞𝑖 =
∑
𝑢𝑖∈𝒰𝑖

𝑢𝑖
∑
𝑐𝑖∈𝒞𝑖

𝜃𝑖(𝑐𝑖, 𝑢𝑖∣Ω) (19)

and since 𝜆𝑞,𝑖 is also equal to the average service rate in
steady-state, it can be expressed as

𝜆𝑞,𝑖 =
∑
𝑢𝑖∈𝒰𝑖

∑
𝑐𝑖∈𝒞𝑖

min(𝑐𝑖, 𝑢𝑖)𝜃𝑖(𝑐𝑖, 𝑢𝑖∣Ω) (20)

3) Transition Probabilities: The transition probabilities de-
note the probability of transitioning from one queue state to
another. By design this is based on the arrival process, the
given state, the next state and the transmission action taken.
With all quantities defined as before, we denote 𝑝𝑐𝑖𝑢𝑖;𝑢′

𝑖
as the

probability of transitioning from state 𝑢𝑖 to 𝑢′
𝑖 given action 𝑐𝑖

is taken. From (2) and (3) this is given as

𝑝𝑐𝑖𝑢𝑖;𝑢′
𝑖
=

⎧⎨
⎩
𝑃 (𝐴𝑖(𝑇𝑓 ) = 𝑢′

𝑖 − [𝑢𝑖 −min(𝑢𝑖, 𝑐𝑖)]), 𝑢
′
𝑖 < 𝐵𝑖

∞∑
𝑗=𝐵𝑖−[𝑢𝑖−min(𝑢𝑖,𝑐𝑖)]

𝑃 (𝐴𝑖(𝑇𝑓) = 𝑗), 𝑢′
𝑖 = 𝐵𝑖

(21)

By design, the steady-state distribution 𝜃𝑖(𝑐𝑖, 𝑢𝑖∣Ω) must
also satisfy the following balance property∑

𝑢′
𝑖∈𝒰𝑖

∑
𝑐′𝑖∈𝒞𝑖

𝜃(𝑐′𝑖, 𝑢
′
𝑖∣Ω)𝑝

𝑐′𝑖
𝑢′
𝑖;𝑢𝑖

=
∑
𝑐𝑖∈𝒞𝑖

𝜃(𝑐𝑖, 𝑢𝑖∣Ω), ∀𝑢𝑖 (22)

C. Per Queue Objective Function

The computed power allocation found in the first component
is used to derive the objective function for the local MAC layer
rate assignment. First, the average marginal cost for taking an
action 𝑐𝑖 in queue 1 can be given as

Υ1,𝑥 =
∑
𝑐2∈𝒞2

. . .
∑

𝑐𝐾∈𝒞𝐾

𝑃 (𝑥, 𝑐2, . . . , 𝑐𝐾)⋅

𝜋2(𝑐2∣Ω)× . . .× 𝜋𝐾(𝑐𝐾 ∣Ω) (23)

where there are 𝑖 − 1 summations. Similar expressions can
be found for all actions 𝑐𝑖 ∈ 𝒞𝑖 and found for all queues
𝑘 = 1, . . . ,𝐾 and where

𝜋𝑖(𝑥∣Ω) =
∑
𝑢𝑖∈𝒰𝑖

𝜃(𝑥, 𝑢𝑖∣Ω), 𝑥 ∈ 𝒞𝑖 (24)

The above steady-state action probabilities are coupled
through the policy Ω. The value 𝑃 (𝑐1, 𝑐2, . . . , 𝑐𝐾) is the total
power associated with taking actions 𝑐1 through 𝑐𝐾 in each
queue (or one for each state 𝑐 ∈ 𝒞) found as the solution
to (15). Here we need to highlight that the above expression
contains the steady-state probability of choosing an action in
each queue. The result of which implies that it is not possible
to directly decouple and consider each queue independently.
We can however consider the following special cases.

1) Single Queue: For the single queue case, the cost
function in (23) reduces to the total power required and
can be solved as an linear programming (LP) problem.

2) Two Queues: For the two queue scenario, the cost
function model can be considered a Quadratic Program-
ming (QP) problem where the number of degrees of
freedom is twice that of the single queue problem or
∣𝒞1 × 𝒰1∣+ ∣𝒞2 × 𝒰2∣, rather than ∣𝒞1 × 𝒰1 × 𝒞2 × 𝒰2∣.

3) General Number of Queues: In general, the problem can
be solved using iterative methods. This process is as
follows. Firstly, given the power allocation values, we
iteratively solve the C-MDP problem (as an LP prob-
lem) for each queue and update the corresponding cost
function until the steady state distribution 𝜃𝑖(𝑐𝑖, 𝑢𝑖∣Ω) in
each queue converges. Convergence details are discussed
in Section V-C.

IV. FORMING PROGRAMMING ELEMENTS

Both the channel/power allocation and the local MAC
rate assignment mechanisms are formulated as optimization
problems. The channel and power allocation scheme can be
formulated as a generic MINLP problem, while the local MAC
rate assignment can be formulated as a general LP (or QP)
problem.

A. Formation of MINLP Problem

A general solution to a NLP problem is non-trivial, this is
further complicated by introduction of discrete or Integer con-
straints on several variables. To relax these discrete constraints
we perform the following:

1) Consider 𝑋𝑗,𝑖(𝑐) as a continuous variable as we note
in practice rounding 𝑋𝑗,𝑖 to the nearest Integer affects
only a single bit of information. Since during any frame
where there is an active the transmission the number
of transmitted bits is in general much larger than 1,
rounding does not dramatically affect the result, and

2) We formulate a general NLP problem for each subset
satisfying (11) and choose the allocation strategy achiev-
ing the lowest power consumption.

Based on the above, we formulate a general NLP prob-
lem such that we solve argmin

x
𝑓(x) subject to Ax ≤ b,

A𝑒𝑞x𝑒𝑞 = b𝑒𝑞 , x ≥ 0 and c(x) ≤ 0 where A and A𝑒𝑞 are
matrices, b and b𝑒𝑞 are vectors, c(x) is a vector of non-
linear functions evaluated at x and 𝑓(x) is a scalar non-
linear function evaluated at x. The above is evaluated at
each state 𝑐 ∈ 𝒞 and over the space 𝒦(𝑐) which is the
space containing each combination {𝑘𝑗}𝑀𝑗=1 that meets the
rate selection restrictions above described in (11).

The derivations of the NLP elements is given below. The
vector x is a (𝑀 + 𝑀𝐾) × 1 vector with elements 𝑃𝑗 , 𝑗 =
1, 2, . . . ,𝑀 and 𝑋𝑗,𝑖, 𝑗 = 1, 2, . . . ,𝑀, 𝑖 = 1, 2, . . . ,𝐾 given
as

x = [𝑃1, . . . , 𝑃𝑀 , 𝑋1,1, . . . , 𝑋1,𝐾 , . . . , 𝑋𝑀,𝐾 ]𝑇 (25)
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TABLE I
FREQUENTLY USED NOTATION

Quantity Symbol Quantity Symbol

Number of Traffic Streams 𝐾 Subchannel SNR 𝛾𝑗
Number of Parallel Channels 𝑀 BER of Channel 𝑗 𝑃𝑏,𝑗

Average Delay Constraint 𝒟𝑖 Scheduling Policy Ω

Packet Size in Bytes 𝐿𝑖 Buffer state-space 𝒰𝑖

Average Arrival Rate 𝜆𝑖 MAC Rate state-space 𝒞𝑖

Buffer Size 𝐵𝑖 Joint MAC Rate state-space 𝒞
Total Average Loss Constraint 𝛿𝑖 Transition probability 𝑝

𝑐𝑖
𝑢𝑖,𝑢

′
𝑖

Packet Dropping Probability 𝑃𝑑,𝑖 Fraction of bits allocated to channel 𝑗 from stream 𝑖 𝑥𝑗,𝑖

Probability of Channel Packet Loss 𝑃𝑙,𝑖 Number of bits allocated to channel 𝑗 from stream 𝑖 𝑋𝑗,𝑖

Frame Duration 𝑇𝑓 Stream Rate of channel 𝑖 𝑅𝑖

Symbol Duration 𝑇𝑠 Throughput of stream 𝑖 �̄�𝑖

Frame Number 𝑛 Per queue cost function Υ𝑖,𝑥

Subchannel Eigenvalue 𝜆2
𝑗 Steady-State policy distribution 𝜃𝑖(𝑐𝑖, 𝑢𝑖∣Ω)

Reference SNR 𝛾0 Steady-state action probability 𝜋𝑖(𝑥∣Ω)

Set of Valid AMC Modes ℳ Number of Arrivals during frame 𝑛 𝐴𝑖(𝑛)

Spectral efficiency in channel 𝑗 𝑘𝑗 Buffer Occupancy during frame 𝑛 𝑢𝑖(𝑛)

M-ary Mode 𝑀𝑗 Packet Service rate of queue 𝑖 during frame 𝑛 𝑐𝑖(𝑛)

1) Objective Function: The objective function from 𝑓(x)
given in (15) is formulated as

𝑓(x) =
𝑀∑
𝑗=1

x(𝒫𝑗)
𝑘𝑗

∑
𝑖∈ℐ′

𝑗

x(𝑖) (26)

where ℐ ′
𝑗 and 𝒫𝑗 are the sets containing location indices of

𝑋𝑗,𝑖, ∀𝑖 and 𝑃𝑗 respectively in x.
2) Equality Constraints: The 𝐾 equality constraints

from (13) are given in the 𝐾 × (𝑀 +𝑀𝐾) matrix A𝑒𝑞 with
entries

𝐴𝑒𝑞:𝑖,𝑘 =

{
1, 𝑘 ∈ ℐ𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(27)

where ℐ𝑖 is the set containing location indices of 𝑋𝑗,𝑖, ∀𝑗 in
x. The coefficient vector b𝑒𝑞 is given as

b𝑒𝑞 = [𝑅1, 𝑅2, . . . , 𝑅𝐾 ]𝑇 (28)

3) Inequality Constraints: The 𝑀 equality constraints
from (14) are defined in the 𝑀 × (𝑀 +𝑀𝐾) matrix A with
entries

𝐴𝑗,𝑘 =

{
1, 𝑘 ∈ ℐ ′

𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(29)

The coefficient vector b is given as

b =
𝑇𝑓
𝑇𝑠

[𝑘1, 𝑘2, . . . , 𝑘𝑀 ]𝑇 (30)

4) Non-Linear Inequality Constraint: The 𝐾 non-linear
inequality constraints are given as a 𝐾×1 vector of functions
of x. For simplicity of notation with further define ℐ𝑗,𝑖 as the
indices of 𝑋𝑗,𝑖, ∀𝑖, 𝑗. Using the bit error rate expression in (1),
we then have

c(x) = [𝑐1(x), . . . , 𝑐𝐾(x)]𝑇 (31)

where

𝑐𝑖(x) =

𝑀∑
𝑗=1

0.15 exp

(
−1.55x(𝒫𝑗)𝛾0𝜆2

𝑗

(2𝑘𝑗 − 1)

)
x(ℐ𝑗,𝑖)

𝑅𝑖
−𝐵𝐸𝑅𝑖

The above framework can now be computed using general

NLP methods such as those provided by fmincon included in
the MATLAB optimization toolbox.

B. Forming LP Problem

As in [4], the constrained MDP problem formulated for
the local MAC rate selection can be solved using Linear
Programming (LP) techniques for each queue. LP techniques
efficiently solve convex optimization problems of the form
argmin

x
c𝑇x, subject to Ax ≤ b, A𝑒𝑞x = b𝑒𝑞 , x ≥ 0 where

A and A𝑒𝑞 are matrices and x,b,b𝑒𝑞 and c are column
vectors. The vector x is the solution to the optimization
problem. In our problem, the elements are given as

x = [𝜽𝑖(𝒞𝑖, 0∣Ω), . . . , 𝜽𝑖(𝒞𝑖, 𝐵𝑖∣Ω)]𝑇 (32)

with each 𝜽𝑖(𝒞𝑖, 𝑢𝑖∣Ω) being a row vector with entries for
each 𝑐𝑖 ∈ 𝒞𝑖.

1) Objective Function: The objective function is of the
form c𝑇x. The vector c is comprised of the total power cost
for taking an action. Each entry of c corresponds to the entry
in x with the value of entries in c given by Υ𝑖,𝑐𝑖 in (23).

c = [Υ𝑖,1, . . . ,Υ𝑖,∣𝒞𝑖∣︸ ︷︷ ︸
1

,
2..𝐵𝑖︷ ︸︸ ︷. . . , . . . , . . .,Υ𝑖,1, . . . ,Υ𝑖,∣𝒞𝑖∣︸ ︷︷ ︸

𝐵𝑖+1

] (33)

2) Equality Constraints: The equality constraints are com-
prised of the balance equations and the causality constraint
(total probability space) given in (21) and (22) respectively.
In matrix form, the balance equations can be expressed as
P× x = Φ0 × x where P is given by

P =

⎡
⎢⎢⎢⎢⎣

p𝒞𝑖
0;0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ p𝒞𝑖

𝐵𝑖;0
... p𝒞𝑖

1;1 ⋅ ⋅ ⋅ ...
...

...
. . .

...
p𝒞𝑖

0;𝐵𝑖
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ p𝒞𝑖

𝐵𝑖;𝐵𝑖

⎤
⎥⎥⎥⎥⎦ (34)

with p𝒞𝑖

𝑞;𝑞′ as a 1× ∣𝒞𝑖∣ row vector with entries

p𝒞𝑖

𝑞;𝑞′ = [𝑝1𝑞;𝑞′ , . . . , 𝑝
∣𝒞𝑖∣
𝑞;𝑞′ ] (35)
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and the quantity Φ0 is given as the 𝐵𝑖 + 1 row matrix

Φ0 =

⎡
⎢⎢⎢⎣

11×∣𝒞𝑖∣ 0 ⋅ ⋅ ⋅ 0
0 11×∣𝒞𝑖∣ ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ 11×∣𝒞𝑖∣

⎤
⎥⎥⎥⎦ (36)

Combining the above with the causality constraint on the
total probability space we have our overall equality constraints
given as

A𝑒𝑞 =

[
P−Φ0

11×(∣𝒞𝑖∣(𝐵𝑖+1))

]
b𝑒𝑞 = [01×(𝐵𝑖+1) 1]𝑇 (37)

3) Inequality Constraints: The inequality constraints are
used to describe the throughput and delay constraints and are
given by (16) and (18) respectively. These constraints are given
in two parts as

A =

[
w1

w2

]
b =

[
z1
z2

]
(38)

where w1 is given as

w1 = −[𝝌𝑖:𝑛(𝒞𝑖, 0), . . . ,𝝌𝑖:𝑛(𝒞𝑖, 𝐵𝑖)] (39)

where 𝝌𝑖:𝑛(𝒞𝑖, 𝑢𝑖) is a row vector with entries 𝜒𝑖:𝑛(𝑐𝑖, 𝑢𝑖) for
all 𝑐𝑖 ∈ 𝒞𝑖 and z1 is given as

z1 = −�̄�𝑖(1− 𝑃𝑑,𝑖)𝑇𝑓 (40)

Further, using (18)-(20), and after some trivial manipulation
we can obtain

w2 = Q×Φ0 −𝒟𝑖U z2 = 0 (41)

where Q = [0, 1, . . . , 𝐵𝑖] and U is given in (42).
The above framework can be computed using general LP

methods such as those provided by linprog included in the
MATLAB optimization toolbox for both the single queue and
iterative methods. Extensions are trivial for the special case
of two queues using QP methods.

The LP problem above yields the steady-state distribution
𝜃𝑖(𝑐𝑖, 𝑢𝑖∣Ω), 𝑐𝑖 ∈ 𝒞𝑖, 𝑢𝑖 ∈ 𝒰𝑖, 𝑖 ∈ {1, 2, . . . ,𝐾}. The physical
meaning of this solution is that in a given queue 𝑖 while the
buffer is in a given state 𝑢𝑖, the scheduler selects 𝑐𝑖 packets
from the queue for transmission with probability given by

Pr[𝑐𝑖∣𝑢𝑖, 𝑖,Ω] =
𝜃𝑖(𝑐𝑖, 𝑢𝑖∣Ω)∑

𝑐′𝑖∈𝒞𝑖

𝜃𝑖(𝑐
′
𝑖, 𝑢𝑖∣Ω)

(43)

C. Scheduler Implementation

The above optimization problem is solved offline, in ad-
vance with proper channel measurements. The advantage of
this method is that all quantities can be stored in a lookup table
(LUT). The LUT stores information on the power, AMC mode
and bit allocation for each state 𝑐 ∈ 𝒞. The offline scheduler
works as follows. At the beginning of each frame 𝑛, each

TABLE II
SIMULATION PARAMETERS

Parameter Value

Number of Antennas (M) 4

Number of Queues (K) 1

Spectral Efficiencies {0, 1, 2, 4, 6}
Length of Packet (bits) 200

Arrival Rate (Packets/frame) 1

Queue Size (Packets) 25

Average Packet Delay (Frames) 5

Total Loss Rate (𝛿, % of Packets) 1%

Target Channel Loss Rate 𝛿/2

Frame Duration (𝑇𝑓 ) 1
Symbol Duration (𝑇𝑠) 0.01
MAC Rates (Packets per Frame) {0, 1, 2, 3, 4, 5}
MIMO Channel Eigenvalues [2, 1.5, 0.6, 0.4]

Reference SNR (𝛾0) 20dB

TABLE III
SIMULATION PARAMETERS - 2 QUEUES

Parameter Value

Length of Packet (bits) [200 250]

Arrival Rate (Packets/frame) [1 1]

Queue Size (Packets) [25 25]

Average Packet Delay (Frames) [4 5]

Total Loss Rate (𝛿, % of Packets) [1 1]%

Target Channel Loss Rate 𝛿/2

queue has 𝑢𝑖 packets waiting for transmission. All queues then
choose actions 𝑐𝑖 with probability given in (43). Given a joint
action 𝑐 = {𝑐𝑖, ∀𝑖}, the scheduler selects the stored AMC
and power modes for each channel and allocates bits from all
queues as found in the stored bit allocation.

All quantities in the LUT can be accurately stored as 64 bit
double. The space required to store each state is

𝑆𝑖𝑧𝑒𝑐 = 64(𝐾𝑀 + 2𝑀) bits/state (44)

as we require storage of 𝐾𝑀 bit allocations, 𝑀 power levels
and 𝑀 AMC mode selections. Further, we note the system
has ∣𝒞∣ states, therefore the total size of the LUT in bits is
given as

𝑆𝑖𝑧𝑒𝐿𝑈𝑇 = ∣𝒞∣𝑆𝑖𝑧𝑒𝑐 = 64∣𝒞∣(𝐾𝑀 + 2𝑀) bits (45)

where the above describes the relation of number of channels,
the number of queues and the possible MAC rates to the
storage size of the LUT.

V. SIMULATION RESULTS

We provide simulation results for the three MAC layer
rate assignment approaches. Firstly, results are provided for
the special case of a single queue using the LP approach,
followed by application of the QP approach for the case of
two queues. Finally we validate the iterative approach by
comparing the accuracy of the two queue system with QP
approach. Convergence details of the iterative method are also

U = [min(1, 0),min(2, 0), . . . ,min(∣𝒞𝑖∣, 0),min(1, 1), . . . ,min(∣𝒞𝑖∣, 𝐵𝑖)] = −w1 (42)
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Fig. 2. Total average power vs. arrival rate - one queue.
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Fig. 3. Total average power vs. packet size - one queue.

provided. Further, we also provide some metrics for the system
complexity. Universal and single queue simulation parameters
are shown in Table II while parameters for the two queue
system are given in Table III.

The performance of the proposed scheme is compared
with a strict scheduler. The strict scheduler implementation
employs the same physical layer as the proposed scheme,
however the transmission rate (packets per frame) is constant.
This transmission rate is chosen from the set of allowable
transmission rates such that it is the minimum rate that
ensures QoS constraints (dropping probability and delay) are
guaranteed and is found through a M/D/1/N model [14].

A. Single Queue Results

Figures 2-5 show the results for total average power for
the single queue scenario for varying of major parameters.
In all cases the proposed scheduler requires lower average
power for transmission. For the case of increasing arrival rate
or packet size we note an increase in the power selection
which is expected while in the case of delay, increasing
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Fig. 5. Total average power vs. buffer size - one queue.

delay constraints result in a reduction of power. Once the
delay constraint exceeds a certain threshold, power is no
longer reduced as the scheduler is no longer dominated by
the delay constraint. In the case of increasing loss rate we see
a steady decline in power. This is due to the large amount
of power required to maintain the stringent loss requirements
(by maintaining a low channel error rate and lower number
of packets dropped in the buffer). Finally, power selection
is u-shaped when the buffer size is varied. This variation
is negligibly small relative to the difference between the
proposed method and the strict scheduler (shown in Fig. 5).
The explanation for this phenomenon is as follows. In the
smaller buffer region, power selection is dominated by trying
to maintain acceptable loss in the buffer while in the larger
buffer region, the power selection hits a plateau due to the
limitation in the maximum tolerable delay is no longer a
dominant factor.

B. Two Queue Results

In Figs. 6-9 the results for the two queue scenario is shown.
As expected, the trends for the two queue scenario follow
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Fig. 7. Total average power vs. packet size - two queues.

those for the case of a single queue with higher transmission
power. This is due to the increase in the total required physical
layer transmission rate. Further, for the case of two queues,
we utilize both the iterative and QP methods to validate
its convergence. Our proposed iterative method converges to
the same solution as the QP approach. Further, the storage
requirements of the LUT in this case is only 36, 864 bits (or
4.5 kilobytes).

C. Iterative Convergence

For 3 or more queues, it is necessary to utilize the iterative
LP method where each queue is solved as a LP problem and
updates the cost function in (23). This method is guaranteed
to find a local minimum due to the monotonicity of (23) in 𝑐𝑖
irrespective of the values of 𝜋𝑖′ (𝑐𝑖′ ∣Ω) for ∀𝑖′, 𝑖′ ∕= 𝑖 and due
to the convexity of the LP problem within each queue.

We further demonstrate the global convergence using Monte
Carlo simulations for both 2 and 3 queue scenarios over 10000
random initial solutions. For the two queue scenario, results
are compared with the QP result, and with the 3 queue scenario
results are measured as relative error (deviation from minimal
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Fig. 9. Total average power vs. buffer size - two queues.

solution). The average relative error versus iteration number in
this case is shown in Fig. 10. As shown, the iterative solution
has a maximal deviation of less than 10−7 over 10000 random
realizations after just 3 iterations strongly suggesting that the
iterative method converges to the global minimum.

D. Loss Tradeoff

As previously discussed, we briefly overview the tradeoff
between buffer and channel losses on the energy efficiency of
the proposed design. Figure 11 shows the total average power
versus the percentage of the total loss rate for both the buffer
and channel losses. This is given for a several configurations
of total loss rates, average delay constraints and buffer sizes.
Overall, the trends demonstrate that is more efficient to incur
a larger percentage of losses in the channel, particularly when
the buffer size is large. However for smaller buffer sizes (i.e.
delay is the dominant factor), it is beneficial to target a tradeoff
between types of losses.
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E. Complexity

System complexity can looked at from both the first and
second stage optimizations. Due to the non-generalities of non-
linear programming solutions, in general it is not possible to
model the complexity of the proposed NLP problem directly.
We herein address this in two parts:

1) Demonstrate that the complexity of the sub optimization
problem is less complex than the full-scale optimization
problem, and

2) Demonstrate that the number of sub problems is less
than the number of sub problems of the full-scale
optimization technique.

For point 1, the full-scale optimization problem requires
exploiting the joint queue state-space (𝒰) combined with the
constraints and MAC rate state-space (𝒞). As the first stage of
our optimization formulation does not rely on the 𝑢 ∈ 𝒰 states,
the resulting computational complexity is not affected by the
joint queue state-space size. As such, the complexity of the
first-stage of our optimization is less complex than considering
the full queue state-space.
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Fig. 12. Computation time.

The system complexity from the second stage (point 2),
incurs a large complexity reduction. As we note from the
previous section, the convergence of the series of LP problems
occurs within several iterations. The dimension of each LP
problem is Φ𝑖 = ∣𝒞𝑖∣(𝐵𝑖 + 1). Assuming computation time is
polynomial in Φ𝑖, the computation time of the above is

𝑇𝑖𝑡𝑒𝑟 ∝ 𝜅

𝐾∑
𝑖=1

Φ𝑖 (46)

where 𝜅 denotes the number of iterations and ∝ means
proportional to. Further, the computation time of the full-scale
problem is

𝑇𝑓𝑢𝑙𝑙 ∝
𝐾∏
𝑖=1

Φ𝑖 (47)

Comparing (46) and (47) its clear to see that for small 𝜅,
the computation time of (47) is sufficiently larger (even for
𝐾 = 2).

In Fig. 12 we further study the complexity by showing
the computation time measured in seconds of the MAC rate
assignment component for a one, two and three queue configu-
ration averaged over 50 realizations using the iterative method.
In the graph, we also provide an estimate of the computational
time of both two and three queue systems assuming a full-
scale optimization scheme (i.e., 𝒞 × 𝒰 as defined before) and
under the assumption that full-scale optimization scales in
polynomial time. We note that there is a large reduction in
terms of computation time using the proposed iterative method
when examining the MAC rate assignment.

VI. EXTENSION TO TIME VARYING CHANNELS

The power, rate and channel allocation scheme described
in the first stage of Section III can be further extended to
the case where MIMO eigenvalues evolve in time. In order
to design such a system, knowledge about the evolution of
the channel eigenvalues must be known. Here3 we consider a

3The described framework can be applied to any channel model with known
eigenvalue distribution.
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sparse MIMO channel model well-described in [15] with time-
varying quantities of interest derived in [16]. The unordered
eigenvalue distribution in this case is simply

𝑓Λ𝑗 (𝜆𝑗) =
1

𝑀𝑅𝑀𝑇 𝜂𝑗
exp

( −𝜆𝑗
𝑀𝑅𝑀𝑇𝜂𝑗

)
, 𝑗 = 1, . . . , 𝐿

(48)
where 𝐿 is the number of independent scatters and 𝜂𝑗 is the
relative power of the 𝑗th scatter such that

∑𝐿
𝑗=1 𝜂𝑗 = 1. The

number of channels (using MIMO SVD eigenbeamforming)
in this case is equal to 𝐿 (i.e., 𝑀 = 𝐿).

Each eigenvalue can be partitioned into a finite number of
states. Partitioning methods are well discussed in the litera-
ture [2], [17], however for the sake of brevity we describe the
equal partitioning method where bounds for each eigenvalue
are simply given as

𝜑𝑗,𝑘 = −𝑀𝑅𝑀𝑇𝜂𝑗 ln

(
1− 𝑘 − 1

∣𝒥𝑗 ∣
)
, 𝑘 = 2, . . . , ∣𝒥𝑗 ∣ (49)

with 𝜑𝑗,1 = 0, 𝜑𝑗,∣𝒥𝑗 ∣+1 = ∞, and ∣𝒥𝑗 ∣ equals the number
of partitions in channel 𝑗. The state-space for eigenvalue 𝑗 is
𝒥𝑗 , and the overall channel space is the 𝐿-dimensional space
given as 𝒥 := 𝒥1 × ⋅ ⋅ ⋅ × 𝒥𝐿.

Modifications to above optimization formulation in Sec-
tion IV-A proceeds as follows. First, we define a new space
𝒮 such that 𝒮 := 𝒞 × 𝒥 . The optimization procedure is
performed for each 𝑠 ∈ 𝒮 and for each valid AMC mode
combination in 𝒦(𝑐).

Next, to compensate for the increased optimization space
𝒥 , we can reduce the solving complexity to an LP problem
from an MINLP problem (which has tractable complexity) by
making the following two adjustments

1) The target BER for a particular class of traffic is the
same in all subchannels, and

2) Allowing power to be configurable per traffic stream in
each channel in a frame.

The LP problem is of the form argmin
x

c𝑇x, subject to Ax ≤
b, A𝑒𝑞x = b𝑒𝑞 , x ≥ 0 where

x = [𝑋1,1, . . . , 𝑋1,𝐾 , . . . , 𝑋𝑀,𝐾 ]𝑇 (50)

and we have A𝑒𝑞 and A given as 𝐾×𝑀𝐾 and 𝑀×𝑀𝐾 ma-
trices respectively with entries as described by (27) and (29).
Both b𝑒𝑞 and b are given as in (28) and (30).

Finally, the cost function c is given as the average power
required to maintain a particular BER in a given channel for
a particular stream as

c =

[
𝑃1,1

𝑘1
, . . . ,

𝑃1,𝐾

𝑘1
, . . . ,

𝑃𝑀,𝐾

𝑘𝑀

]𝑇
(51)

where 𝑃𝑗,𝑖 is the minimum average power required to maintain
a given average bit error rate and is given as the solution to

𝐵𝐸𝑅𝑖 =

∫ 𝜑𝑗,𝑘+1

𝜑𝑗,𝑘
𝑃𝑏(𝑃𝑗,𝑖 ⋅ 𝑟, 2𝑘𝑗 )𝑓Λ𝑗 (𝑟)𝑑𝑟∫ 𝜑𝑗,𝑘+1

𝜑𝑗,𝑘
𝑓Λ𝑗 (𝑟)𝑑𝑟

(52)

when channel 𝑗 is in state 𝑘 ∈ 𝒥𝑗 and where 𝑃𝑏(⋅ ⋅ ⋅ ) is given
in (1). Due to the monotonicity of 𝑃𝑏(𝛾, 𝑘𝑗) in 𝛾, the above
can be solved efficiently using simple bisection techniques for
𝑃𝑗,𝑖 for each 𝑠 ∈ 𝒮 and possible AMC mode.

VII. CONCLUSION

In this work, a general {𝐾 × 𝑀} model is presented
with a corresponding scheduler to minimize average transmis-
sion power by utilizing both channel and queue knowledge.
Through a novel MAC rate assignment scheme, it is possible
to decouple the problem and utilize queue state information in
all queues to derive a QoS-aware scheduling policy over both
static and time-varying MIMO SVD channels. The proposed
dynamic scheduler is shown to outperform static scheduling
and is able to meet hard QoS constraints. Future work will
focus on further reducing the system complexity beyond
that discussed here, simplifying the complexities of the non-
linear optimization problem by employing packet-based rate
assignment. In this way, the non-linear constraints can be lifted
and our ideology can be applied to more general multi-channel
systems.
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